Biological Databases (Part 2)

Kam D. Dahlquist, Ph.D. Department of Biology Loyola Marymount University

BIOL 367 February 1, 2024

Biological Databases Are Evaluated Based on Quality and Utility

- Scientific quality of the database
 - What biological information does it contain?
 - Does the content appear to completely cover its content domain?
 - What species are covered in the database?
 - Is the database content useful?
 - What biological questions can it be used to answer?
 - Is the database content timely?
 - Is there a need in the scientific community for such a database at this time?
 - Is the content covered by other databases already?
 - How often is the database updated?
 - When was the last update?

Biological Databases Are Evaluated Based on Quality and Utility

- General utility of the database to the scientific community
 - Are there links to other databases?
 - Which ones?
 - Is it convenient to browse the data?
 - Is it convenient to download the data?
 - In what file formats are the data provided? (standard or nonstandard)
 - User-friendliness—can a naive user quickly navigate the website and gather useful information?
 - Is the web site well-organized?
 - Does it have a help section or tutorial?
 - Are the search options sensible?
 - Do sample query results make sense?
 - Would you direct a colleague unfamiliar with the field to use it?
 - Access—is there a license agreement or any restrictions on access?

The Number of Databases Themselves Is Growing

Unique Databases Debuted between 1991-2016

Imker, H. (2018). 25 Years of Molecular Biology Databases: A Study of Proliferation, Impact, and Maintenance. *Frontiers in Research Metrics and Analytics*, *3*, 18. https://doi.org/10.3389/frma.2018.00018, Figure 2

Growth of Articles in NAR Database Issues 1991-2016

Imker, H. (2018). 25 Years of Molecular Biology Databases: A Study of Proliferation, Impact, and Maintenance. *Frontiers in Research Metrics and Analytics*, *3*, 18. https://doi.org/10.3389/frma.2018.00018, Figure 1

Flash forward to NAR Database Issue 2024

- 90 papers on new databases (record tied with 2023!)
- 83 updates from previously published databases
- NAR Molecular Biology Database Collection
 - 1060 entries reviewed in 2023
 - 97 new resources added
 - 388 eliminated (URLs discontinued)
 - Total 1959 databases in the collection

Biological Databases Are a Moving Target

- Regular updates can be both a blessing and a curse
 - blessing: always having access to up-to-date data
 - curse: always having to keep up with up-to-date data
- Databases can change locations or formats
 - breaking scripts used for automated data analysis pipelines
 - affecting interoperability with other databases
- They can disappear completely due to lack of funding
- Garbage in = garbage out
 - curation issues
 - error propagation

Nature (2005) 435: 1010-1011

Current Availability of Databases that Debuted between 1991 and 2001 Averages to 39.5% (105 Databases)

Imker, H. (2018). 25 Years of Molecular Biology Databases: A Study of Proliferation, Impact, and Maintenance. *Frontiers in Research Metrics and Analytics*, *3*, 18. https://doi.org/10.3389/frma.2018.00018, Figure 4

The Requirement for Data Sharing is Not Universal

- From the beginning, when new sequences or structures were published, authors were required to submit the data to a public database
- However, there are no other uniform policies governing other types of data (although special interest groups are working on this)
- Open Access vs. traditional publishing