The short-term response of yeast to potassium starvation

Barreto, L., Canadell, D., Valverde-Saubí, D., Casamayor, A., & Ariño, J. (2012). The short-term response of yeast to potassium starvation. *Environmental microbiology*, *14*(11), 3026-3042.

Mihir Samdarshi, David Ramirez, Jonar Cowan, Aby Mesfin & Christina Dominguez Loyola Marymount University November 14, 2019 Transcriptomic Genome Analysis on Potassium-Deprived Yeast Has Not Been Studied

Yeast Cells Cultured Potassium-Free YNB Based Growth Medium

Yeast Cells Modified Gene Expression in Response to Potassium Deprivation

The Article Is Well Formatted But Has Its Limitations

Transcriptomic Genome Analysis on Potassium-Deprived Yeast Has Not Been Studied

Yeast Cells Cultured Potassium-Free YNB Based Growth Medium

Yeast Cells Modified Gene Expression in Response to Potassium Deprivation

The Article Is Well Formatted But Has Its Limitations

Transcriptomic Genome Analysis on Potassium-Deprived Yeast Has Not Been Studied

*There were no previous studies that directly correlate to this work. However, there are multiple studies that are able to supplement the work.

- Connection between potassium and ammonium when analyzing potassium
- Potassium limits growth when ammonium is the nitrogen source
- Ammonium appears to be toxic for Saccharomyces cerevisiae
- Ammonium toxicity is increased under high-potassium conditions
 - Caused by over-expression of ammonium transporters
- Ammonium toxicity is well-established in metazoans, but not in yeast

Potassium is the most abundant cation in the cytosol and extremely important to normal cell function

- Maintenance of normal cells functions
- Potassium homeostasis is needed across the cell membrane
- Oxidative stress and potassium imbalance can cause life threatening conditions

Transcriptomic Genome Analysis on Potassium-Deprived Yeast Has Not Been Studied

Yeast Cells Cultured Potassium-Free YNB Based Growth Medium

Yeast Cells Modified Gene Expression in Response to Potassium Deprivation

The Article Is Well Formatted But Has Its Limitations

Yeast cells cultured on Translucent K+ free media

• E. Coli cells cultured on LB broth

 Contained plasmid pTRK24 (expressing TRK1 gene) or plasmids pTrk1K1147N and pTrk1M1153R (expressing mutant Trk1 gene)

Strain	Genotype	Source/reference Euroscarf	
BY4741	MATa his3∆1 leu2∆0 met15∆0 ura3∆0		
BYT1	BY4741 trk1A::loxP	Navarrete et al. (2010)	
BYT2	BY4741 <i>trk2</i> ∆::loxP	Navarrete et al. (2010)	
BYT12	BY4741 trk1A::loxP trk2A::loxP	Navarrete et al. (2010)	
BY4741 rtg2	BY4741 rtg2::kanMX4	Euroscarf	
BY4741 rtg3	BY4741 rtg3::kanMX4	Euroscarf	
BY4741 fzo1	BY4741 fzo1::kanMX4	Euroscarf	
YNR055.1	BY4741 CLN3-13MYC::KanMX4	J. Clotet	
YPC722 (5)	BY4741 CLN1-TAP::HIS3	Ghaemmaghami et al. (2003)	
YPC723	BY4741 CLN2-TAP:: HIS3	Ghaemmaghami et al. (2003)	
YPC724	BY4741 CLB2-TAP:: HIS3	Ghaemmaghami et al. (2003)	
W303-1A	MATa ade2 can1 his3 leu2 trp1 ura3	R. Rothstein	
DBY746	MATα his3-1 leu2-3,112 ura3-52 trp1-289	D. Botstein	

RNA was Extracted to Perform a Microarray and RT-PCR

• Yeast cells suspended in Translucent media either with or without 50mL KCL

- Timepoints: 10, 20, 40, 60 and 120 min
- 4 replicates
- 20 mL of culture at each timepoint for microarray analysis
- RNA extraction via Ribo Pure[™]-Yeast kit (Ambion)
 - Induction: signal ratio \geq 2.0-fold
 - Repression: signal \leq 0.50-fold.
 - RT-PCR with CIT2, DLD3, CLN2, CLN3, CLB1, CLB2, CLB5, CLB6 and ACT1 primers
 - 27-29 cycles

Transcriptomic Genome Analysis on Potassium-Deprived Yeast Has Not Been Studied

Yeast Cells Cultured Potassium-Free YNB Based Growth Medium

Yeast Cells Modified Gene Expression in Response to Potassium Deprivation

The Article Is Well Formatted But Has Its Limitations

Yeast Cells Modified Gene Expression in Response to Potassium Deprivation

- Short-term potassium deprivation...
 - 1. changes sulfur metabolism
 - 2. induces oxidative stress response
 - 3. activates the retrograde pathway.

• Associated with ammonium accumulation through the Trk1 potassium transporter.

Figure 1. The majority of the genes were induced and repressed 60-120 min after the cells were transferred to potassium free media.

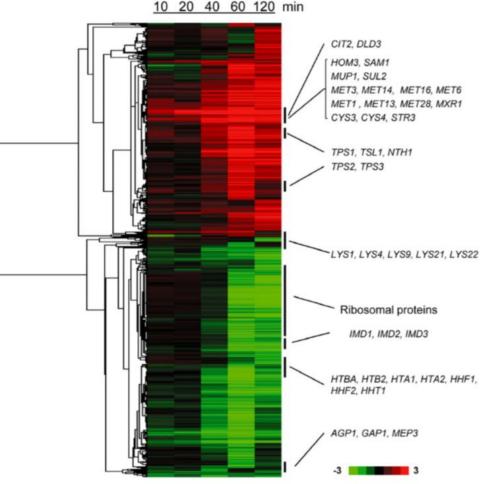


Fig. 1: Barretto et al. (2012) Environmental microbiology. 14:11

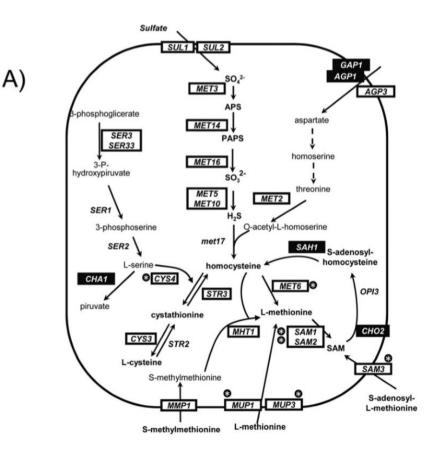

Table 1. The majority of the genes were induced and repressed 60-120min after the cells were transferred to potassium free media.

 Table 1. Short-term transcriptional changes associated to potassium starvation.

Genes	Minutes after transfer to K+-free medium					
	10	20	40	60	120	
Induced	53	58	255	568	619	
Repressed	45	33	235	733	560	

Figure 2A. Potassium starvation decreases sulfuric amino acid metabolism.

• Model demonstrates the sulfur uptake and how Met/Cys are metabolized.

Figure 2B. Potassium starvation decreases sulfuric amino acid metabolism.

- Graph depicting relative concentrations of mRNA for genes associated with Met/Cys metabolism
- Increase in expression of genes → depletion of Met/Cys in cells

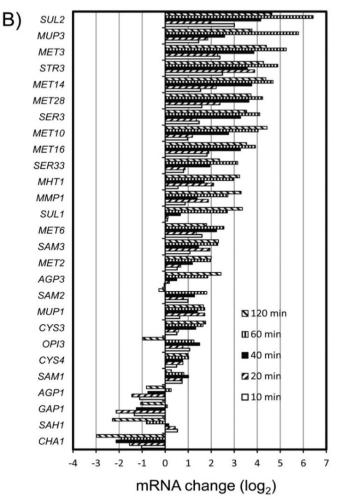
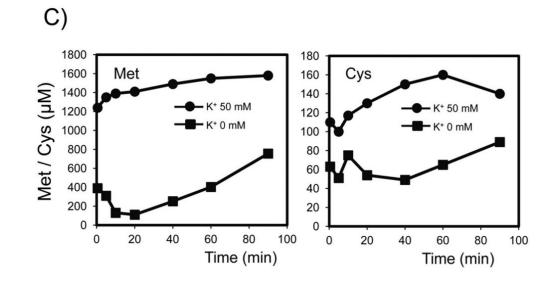
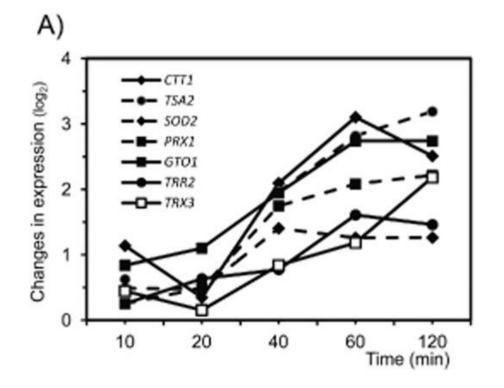



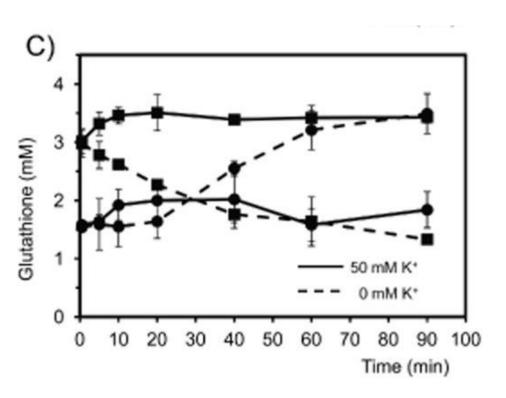
Fig. 2B: Barretto et al. (2012) Environmental microbiology. 14:11


Figure 2C. Potassium starvation decreases sulfuric amino acid metabolism.

- Relative concentration of Met/Cys after treatment
- The concentration of Met/Cys amino acids decreases with potassium treatment

Figure 3A: Oxidative Stress Response Genes Are Induced by Potassium Deprivation

- After potassium starvation
- Measured through microarray experiments


Figure 3B: Oxidative Stress Response Genes Are Induced by Potassium Deprivation

- Oxidation of Dye
- Fluorescent indicates oxidation
- ROS formation causes oxidation when switch to K⁺-free medium

B) min 0 30 40 60 120

Figure 3C: Oxidative Stress Response Genes Are Induced by Potassium Deprivation

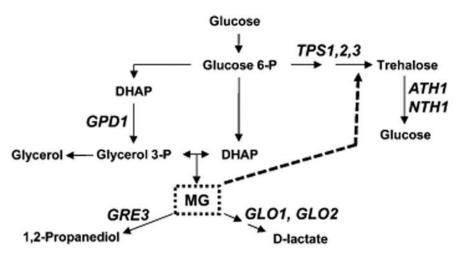
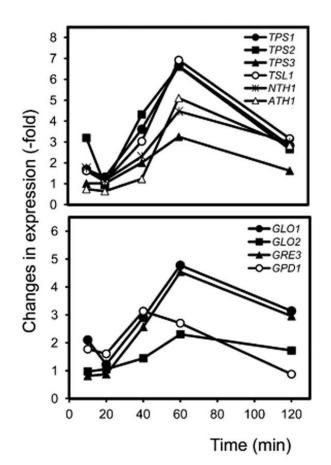
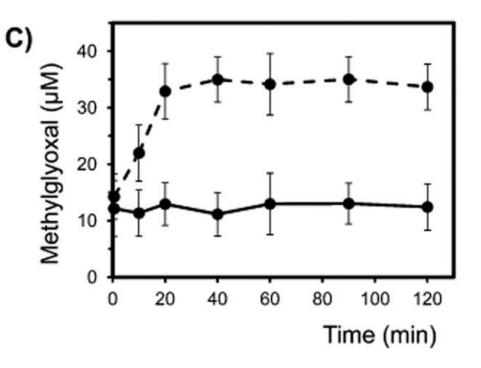

- Glutathione Levels
- Glutathione important to redox balance
- Reduced form (square) GSH Oxidized form (circle) - GSSG
- Potassium starvation- decline in GSH and increase in GSSG
- Overall decrease in ratio

Figure 4A: Methylglyoxal Increases with Trehalose Metabolism


- Mechanism of MG
- Methylglyoxal (MG) byproduct of glycolysis
- MG detoxification
- MG initiation of trehalose metabolism


Figure 4B: Methylglyoxal Increases with Trehalose Metabolism

- Genes in trehalose synthesis
- Genes involved in trehalose synthesis show an increase in expression
- Increase in methylglyoxal shown by increased expression of GLO1 and GLO2

Figure 4C: Methylglyoxal Increases with Trehalose Metabolism

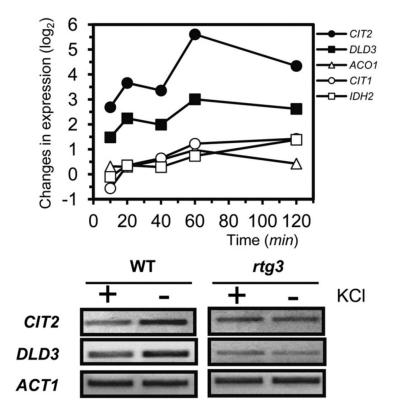

- Resuspended without potassium (----) or with 50 mM potassium (-)
- Genes in MG detoxification enhanced without potassium
- Genes linked to trehalose metabolism genes

Figure 5A. Potassium starvation leads to a strong increase in expression of CIT2 & DLD3 genes central to the retrograde response

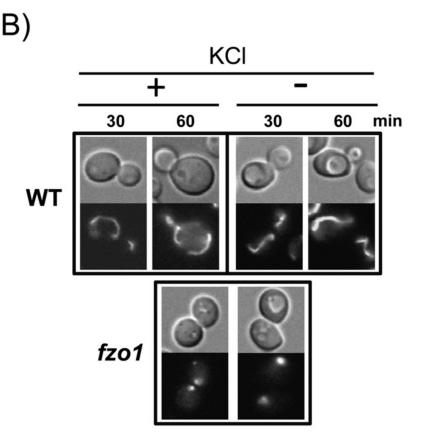

- The retrograde response involves the transmission of information from mitochondria (in eukaryotes other than plants) to the nucleus
- Deletion of RTG3 results in blockage of the increased expression of CIT2 and DLD3 in response to potassium starvation

Figure 5B. K⁺ starvation leads to a strong increase in expression of CIT2 & DLD3 genes central to the retrograde response

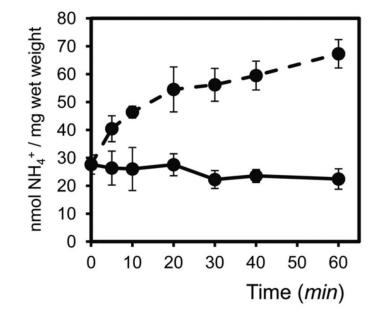
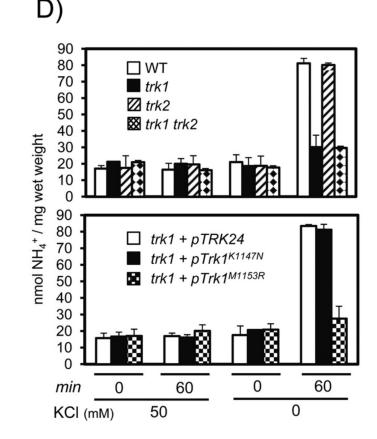

- Mitochondrial morphology was normal, and not the cause of the retrograde response
- Δ*fzo1* mutant shows an abnormal mitochondrial morphology phenotype

Figure 5C. Intracellular ammonium levels increase immediately after transfer to K⁺ media


- Potassium starvation leads to an accumulation of ammonium in the cell, and may be one cause of the retrograde response
- Other studies have shown that retrograde gene response has been associated to an increase in intracellular ammonium content

C)

Figure 5D. Ammonium enters the cell utilizing the same transporters as potassium

- Cells without Trk1 do not show significant ammonium accumulation
- A Trk1 mutation that abolishes K⁺ cation transport also shows significant decrease in ammonium accumulation

Figure 6. Expression of genes controlling cyclins exhibit a varied response to K⁺ starvation

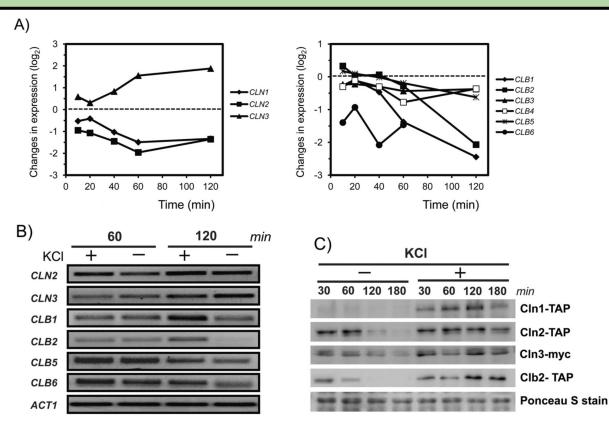
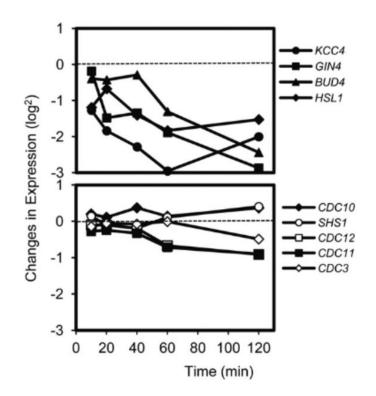



Fig. 6: Barretto et al. (2012) Environmental microbiology. 14:11

Figure 7A: Lack of potassium in yeast destabilizes the septin ring

- Bud Neck and Septin Ring Formation DNA Expression Levels
- all three genes (GIN4, KCC4, HSL1) repressed
- mRNA levels for BUD4 also downregulated
- Microarray data indicated no relative change for septin genes

Figure 7B: CDC11-GFP localization is affected during K+ starvation

- one component of septin ring
 - after 30 min: appears distorted
 - after 60 min: no longer detectable

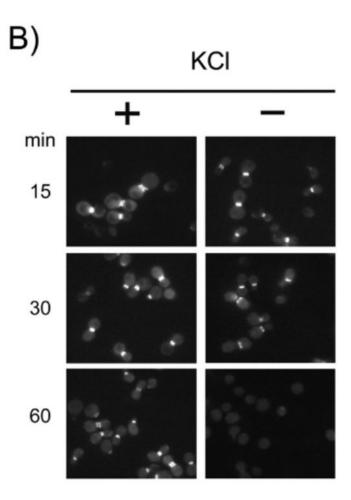
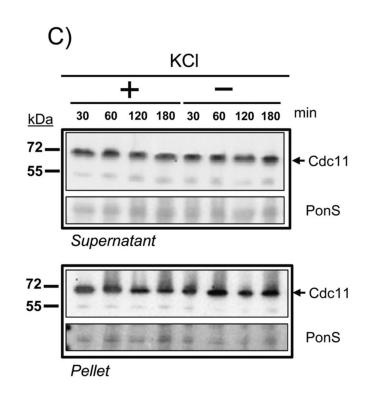
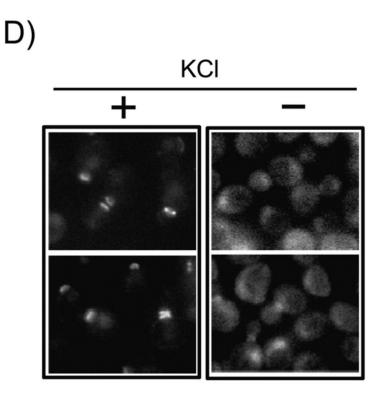



Fig. 7B: Barretto et al. (2012) Environmental microbiology. 14:11


Figure 7C: CDC11 protein levels are constant during starvation

- Amounts of the septin were evaluated:
 - immunoblot in extracts of cells grown in (+) or (-) potassium
- Cdc11 remains constant in both fractions

Figure 7D: CDC11 not properly localized in cells grown 60 min

- Immunolocalization experiment using anti-CDC11 antibodies
- mislocalization of the CDC11 septin

Yeast Cells Modified Gene Expression in Response to Potassium Deprivation

- Major alterations in transcriptional profile
 - resulting induced or repressed at least at one time point
- Strong induction of most genes
 - sulfur utilization
 - Met/Cys import
 - biosynthesis
- Change in cells occur during retention of more than necessary potassium
- Strong increase in expression of genes related to trehalose metabolism
 - biosynthetic and degradative pathways
- Ammonium influx mediated by Trk1 potassium transporter
 - ability to transport potassium

Transcriptomic Genome Analysis on Potassium-Deprived Yeast Has Not Been Studied

Yeast Cells Cultured Potassium-Free YNB Based Growth Medium

Yeast Cells Modified Gene Expression in Response to Potassium Deprivation

The Article Is Well Formatted But Has Its Limitations

Potassium Starvation Changes Gene Expression

- Changes in gene expression impacted by potassium starvation
 - Sulfur metabolism and ammonium accumulation
 - Decrease in ribosome biogenesis and translation
- Uncovers more of role of potassium in the cell and its necessity for function
- Expands on specific pathways that are affected by deprivation
- Future Directions
 - Other cations and their effect on cellular function and gene expression

The Article Is Formatted Well But Has Its Limitations

- Elaborate on introduction
- Many figures to corroborate with results and findings
- Major concepts and ideas could have been introduced better and clearer
- Confusion with understanding the multitude of pathways

References

Barreto, L., Canadell, D., Valverde-Saubí, D., Casamayor, A., & Ariño, J. (2012). The short-term response of yeast to potassium starvation. *Environmental microbiology*, *14*(11), 3026-3042.

Hess, D. C., Lu, W., Rabinowitz, J. D., & Botstein, D. (2006). Ammonium toxicity and potassium limitation in yeast. PLoS biology, 4(11), e351.

Udensi, U. K., & Tchounwou, P. B. (2017). Potassium Homeostasis, Oxidative Stress, and Human Disease. International journal of clinical and experimental physiology, 4(3), 111–122. doi:10.4103/ijcep.ijcep_43_17

Thank You Dr. Dahlquist LMU Biology Department BIOL 367 Classmates