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Introduction 

Saccharomyces cerevisiae, commonly known as yeast, is a eukaryotic model organism 

for the study of gene expression (DeRisi et al., 1997). Findings from research of Saccharomyces 

cerevisiae can be extrapolated upon to make inferences about other eukaryotic organisms, 

including Homo sapiens. Yeast has several characteristics that make it a model organism for 

gene expression research. Among these favorable characteristics include the fact that it is quite 

easy to manipulate in a lab setting and the availability of its genome sequence (Yourgenome, 

2016).  

One of the atmospheric stressers that has been tested on yeast is the organism’s response 

to cold shock (Becerra et al., 2003). From analyzing the yeast genome response to cold shock, 

profiles of genes that are affected by cold shock can be identified. From these profiles, which 

contain genes that perform a similar function, the overall effect of cold shock on the expression 

of the genome can be determined. And thanks to the fact that Saccharomyces cerevisiae is a 

model organism, these results can then often be expanded to the human genome (University of 

Michigan, 2009).  

Previous research on yeast and cold shock suggests that temperature change does indeed 

have a significant impact on the expression of the genome (Becerra et al., 2003). While the 

number of genes affected by severe cold shock conditions has been found to be less than the 

number of genes affected by severe heat shock conditions, there are still over 100 genes that 

have been found to have a significant change in expression when subjected to a temperature 

change of 30°C to 4°C. However, many of the genes that are upregulated by extreme cold shock 
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conditions are also upregulated by severe heat shock conditions. This suggests that these gene 

clusters share regulatory signals that are not just for cold shock response, but a larger 

environmental stress response in general (Becerra et al., 2003). 

While progress has been made towards determining the effect of cold shock on the 

genome expression of yeast, there is still a lack of knowledge regarding which transcription 

factors in yeast belong in the gene regulatory network that controls the cold shock response of 

the organism. The deficits of past technology have made the determination of this quite difficult. 

Programs like GRNmap can conduct mathematical models from microarray results to determine 

this type of information (GRNsight). However, the results from a GRNmap model, which are 

returned in the form of a tabular spreadsheet, are incredibly difficult to comprehend and draw 

conclusion from (GRNsight). 

Thankfully, new technology in the form of a program called GRNsight, allows for the 

visualization of this outputted tabulated data of gene regulatory networks as a diagram that 

shows the relationships between genes and regulatory relationships as nodes and edges 

(Dahlquist et al., 2016). Using this software, results from microarray data, and specifically 

results of different profiles affected by cold shock in yeast, can be formatted and uploaded to 

create these graphs. These diagrams can then be used to make more confident interpretations 

regarding which transcription factors belong in the gene regulatory network and what the 

relationship is between all of the transcription factors in any given network (Dahlquist et al., 

2016). 

This research project seeked to understand the gene regulation network of one of the most 

affected gene profiles (profile 22) from the effects of cold shock on the dZAP1 strain of yeast. 
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Through the statistical analysis of collected microarray data from Dr. Dahlquist’s lab on the 

genomic expression of this strain of yeast at varying time intervals after being subjected to cold 

shock, the relationship between the most important transcription factors in gene profile 22 were 

determined. GRNsight was then used to visualize these relationships. Additionally, this project 

seeked to add to the functionality of GRNsight, which already creates a visualization of the gene 

regulatory network as nodes and edges (Dahlquist et al., 2016), by adding a new feature in the 

form of a right-click page that shows general information specific to each gene in the network. 

This particular team retrieved and returned important information regarding transcription factors 

from the JASPAR database (JASPAR, 2017), which was then included on the newly created 

gene information page that was part of a collaborative effort of four teams. 
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Materials/Methods 

 

Quality Assurance/Project Manager: 

 

Figure A: Flow Chart of tasks/milestones performed by the quality assurance/project manager 

team member of the JASPAR the Friendly Ghost team. 

A number of steps were carried out by the quality assurance/project manager team 

member. As a starting point, in order to gain background knowledge on the field, the quality 

assurance team member partnered with the data analyst to perform a literature search for 

scholarly articles on yeast and cold shock (QLanners_Week_11). After compiling a list of 

articles, one article was chosen to be reviewed in depth and summarized in the form of a journal 

club presentation to the class (QLanners_Week_12). Following the conclusion of the background 

research, the quality assurance team member began to facilitate the necessary actions for the 

team by determining deadlines and milestones for each member. These deadlines and milestones 

were formatted into a group calendar (JASPAR_the_Friendly_Ghost). Once these milestones had 

been established, the quality assurance team member began work on the project by visiting and 

familiarizing himself with each of the five databases used in this study; which where Ensembl, 

UniProt, NCBI, SGD, and JASPAR. Once the information included on each database was 
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understood, the quality assurance team member determined the necessary fields to be pulled 

from each database, compiling a final list of desired fields about each gene and from which 

database each of these fields should be pulled (QLanners_Week_14). These results were then 

verified with the professor, adding any additionally requested fields, and then this list was shared 

with the API coders.  

Once the necessary fields had been determined, and the coders had completed their code 

to retrieve these fields, the quality assurance team member began work on facilitating the final 

deliverables (QLanners_Week_15). The roles for each team member were determined, and 

added to the team calendar. Along with determining these final milestones, the quality assurance 

team member checked-in with the coders from both API teams to identify which fields were 

unable to be retrieved. Taking into consideration these unretrievable fields, the quality assurance 

team member then determined the necessary future work. 
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Data Analyst:  

 

Figure B. Flow chart generated from key tasks and processes in interpretation and visualization 

of dZAP1 gene expression (Aporras1_Week_15). 

The data analyst was assigned the role of performing high level statistical analysis on 

microarray data of the dZAP1 strain of saccharomyces cerevisiae. Before starting analysis, the 

data analyst worked alongside the quality assurance team member to complete a general search 

on literature regarding yeast and cold shock (Aporras1_Week_11). Subsequently, one article was 

selected to analyze in depth and create a presentation in order to present the background, 

methods, results, and conclusions of the article (Aporras1_Week_12).  Prior to beginning 

analysis with the dZAP1 strain genelist, the ANOVA test was performed to calculate if there was 

any significant change in the genes different from zero at any time point throughout the 

collection of microarray data (Aporras1_Week_8). Furthermore, the calculation of the 

Bonferroni corrected p-value was performed as a more stringent calculation compared to the 

Benjamini-Hochberg corrected p-value in order to account for the multiple testing problem 
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which can also be found in the results section (Aporras1_Week_8). Once these statistical 

methods were performed using the microarray data of dZAP1, STEM (Short Term Expression 

series Miner) was used to cluster and generate profiles of gene expression through the different 

time points of cold shock and recovery (Aporras1_Week_10). STEM generated seven significant 

profiles with significant p-values and varying amount of genes within the individual profiles 

whose GOlists and genelists were saved for future analysis and interpretation. Ultimately, Profile 

22 of the dZAP1 strain was selected because it possessed a large cluster of genes, totaling 252, it 

had a significant p-value of 2.0 E-157, and it displayed no significant change in expression until 

the recovery phase of the experiment after time point 60 minutes (Aporras1_Week_10). The 

GOlist provided allowed for analysis of cell processes being altered during the cold shock and 

recovery phases and the respective genes associated. 

Prior to the analysis of the specific profile, edits were made to both Aporras1_Week_8 

and Aporras1_Week_10 pages from feedback received from the professor (Aporras1_Week_14). 

Profile 22 of dZAP1 strain was selected for further interpretation and the genelist was inputted 

into YEASTRACT’s “Rank by TF” to generate a list of transcription factors regulating the genes 

within the cluster. Once the list of transcription factors was generated, 20 significant 

transcription factors were selected from the list to create a gene regulatory network in addition to 

two transcription factors HAP4 and GLN3 (Aporras1_Week_14). YEASTRACT was used to 

generate a regulation matrix from the selected transcription factors with the filter of “Only DNA 

binding evidence” (Aporras1_Week_14). This regulation matrix was then formatted prior to 

being inputted into GRNsight to generate a visualization of the regulatory network of the 

selected transcription factors and the results were verified by the professor (Aporras1_Week_14). 
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Due to the large size of the regulatory network, it was trimmed down to a total of 15 

transcription factors by the professor and regulatory network visualization was redone to only 

include 15 transcription factors (Aporras1_Week_15). MATLAB was then used to generate an 

output which  allowed GRNsight to display color signifying the magnitude and direction of 

regulation. (Aporras1_Week_15). 

 

Coders: 

Figure C: Coders wrote code to retrieve data from JASPAR and delivered results to the design 

team, accomplishing the above along the way. 

There were a number of steps that the coders team members completed throughout this 

assignment. Before the coders moved their focus to the bulk of the GRNsight part of this project, 

they were asked to gain some background knowledge on the field of web development. They 

read “Chapter 6: How Are Apps Made?” in Paul Ford’s What is Code? which is an article from 

2015 that covers most of the bases of the software development industry. They were asked to 

thoroughly read this chapter and then present to their class what it entailed. This chapter was 

specific to all of the tools that the coders used in development, highlighting some important tools 

at the time. After covering all of the background knowledge, the coders then began the 
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introduction phase to the new project. Often when being assigned to a new project, software 

engineers are given an introduction to the code base so that they may understand how everything 

functions within the project before they begin their work. This project was no different, as the 

professor gave a quick introduction along with a manual which illustrated the relevant folders 

within the code bank that would be used for this feature. After JASPAR’s fellow team members 

forked GRNsight, the JASPAR team start by setting up a local version of GRNsight and making 

sure that everything was properly functioning. After this step, they began to acquaint themselves 

with GRNsight and understand their job in the implementation of this new feature. At this point, 

as as displayed in Figure C, the coders moved from the immersion phase (green) and into the 

intermediate phase (yellow).  

The intermediate phase was where most of the progress was made towards finishing their 

part of the feature. They started by creating the branch that would be solely for JASPAR team 

progress, as well as the new files that would contain their soon-to-be-written code. At this point 

the coders were completely set up with respect to GRNsight  and were ready to learn about the 

JASPAR database and how it worked. The majority of this part was spent reading the JASPAR 

database documentation which clearly states how the database API calls work; specifically URL, 

return values, and headers. JASPAR was effective in laying out their different API calls and 

explaining what each call did. This made it much easier for the coders to decipher which of the 

calls was best for retrieving the information that they needed (JASPAR API).  

After studying JASPAR, and deciding which calls were to be use, the coders then moved 

on to implementing the first of the API calls. The first call used the inputted gene symbol to 

search the JASPAR database and retrieve a list of search results, from which they retrieved the 
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matrix ID from the first result. The second call retrieves the object of gene information 

associated with that gene symbol. It used the matrix ID that was retrieved from the first call and 

returned the object with all of the information that JASPAR has for this gene, if any at all. At this 

point, as they were testing their code, they were getting something called an 

“Access-Control-Allow-Origin” error which is usually caused by an APIs lack of support for 

Cross-Origin Resource Sharing(CORS), but when they went and checked the websites overview 

page, they found the following: 

Figure D. Screenshot of JASPAR’s support of CORS. 

(API Overview). After reading this on the API Overview page of JASPAR, the coders 

began to believe that this error was due to miscoding of the getJasparInfo() function, but after 

studying the code and testing the API calls through the JASPAR interface, they realized that this 

issue was not due to the structure of their code, but in fact was due to JASPAR and the fact that 

they don’t support CORS. At this point, the JASPAR team met with the professor and decided 

that the best solution would be to implement a relay controller that would handle all traffic from 

JASPAR to GRNsight. Once the relay controller was done being integrated with the server-side 

of GRNsight, the API calls began working properly, which corresponded with the end of the 

intermediate phase of this project (Figure C). 

The next phase of the project was the finishing touches (red) phase, which was where the 

coders spent most of their time interacting with the other teams working on this feature, to make 

sure that all of the pieces were working together properly (Figure C). The first step was to make 
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sure that the JASPAR information, that the biologists on the integration team were requiring for 

the final page, was properly being organized and returned so that the information was useful on 

the page. This required taking the object returned from the second API call and properly “filing” 

the relevant fields into their spots within the master object. At this point, all that was left to do 

was to pass the information onto the page design and integration team so that they knew what to 

expect when calling the JASPAR function, so that they could properly put it on the page, which 

then marked the end of the coders work on this GRNsight feature, as displayed in Figure C. 
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Results 

Quality Assurance/Project Manager: 

 
Database 

 Ensembl JASPAR NCBI SGD UniProt 

Field to be 
retrieved 

Gene ID Matrix ID Gene ID Gene ID 
(Standard, 
Systematic, SGD) 

Gene ID 

Description/F
unction 

Class Locus Tag Regulation 
(Regulators, 
Targets) 

Protein 
Sequence 

DNA 
Sequence 

Family Also Known 
As 

Interaction 
(Total, Physical, 
Genetic) 

Similar 
Protein 

Gene 
Location 

Sequence 
Logo 

Chromosome 
Sequence 
(ID) 

Gene 
Ontology 
Summary 

Protein 
Type/Name 

Gene Map Frequency 
Matrix 

Genomic 
Sequence 
(ID) 

Molecular 
Function 

Species 

  Protein 
Sequence 
(ID) 

Biological 
Process 

 

   Cellular 
Component 

 

Table 1. An outline of which fields the quality assurance guild determined needed to be retrieved 

from each of the five databases.  

As is apparent from Table 1 above, the database from which the most information fields 

were selected was SGD. This is due to the fact that the data that is currently being analyzed using 

GRNsight is primarily for the yeast genome, and SGD is a database dedicated solely to the study 

of yeast. In this way, this database has the most in-depth information of genes in yeast and thus 
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provided the highest number of relevant fields of information on its database. Beyond the 

information that could only be obtained through SGD, the rest of the information was split up 

between the four other databases. JASPAR (which is the database from which this team pulled 

their information) is a database dedicated solely to transcription factors. Therefore, the 

information retrieved from this page has to do with characteristics that are important for 

transcription factors (such as the frequency matrix and sequence logo which indicate the starting 

sequence of these factors). Due to the fact that UniProt is the most well-regarded database for 

information on proteins, fields from this database focused on protein data (such as the sequence 

and related proteins). Lastly, Ensembl and NCBI are more general databases that provide 

information for a variety of genes for a number of different species. Some of the most basic (but 

vital) fields were pulled from these databases (such as gene sequence, description etc.) as they 

could continue to be used in the future as GRNsight’s functionality expands beyond primarily 

just looking at data for transcription factors in yeast to looking at different types of genomic 

networks in all kinds of species. 

In addition to this primary task, the quality assurance team member worked closely with 

the coders from both API teams to ensure that all of the proper fields were being pulled from the 

databases. While all of the fields were able to be correctly pulled from JASPAR, there were 

some fields that the hAPI team coders were unable to retrieve from the other four databases. A 

list was started regarding these fields that could not be obtained. However, this list (which as of 

now only includes “Similar Proteins” from UniProt) is incomplete, as the coders were still 

working to retrieve fields at the time this paper was written (and also because the quality 

assurance team member was unable to retrieve all of these fields despite reaching out to the 
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coders of the hAPI team on multiple occasions).  

Data Analyst: 

ANOVA WT dZAP1 

p < 0.05 2528 (40.85%) 2485 (40.2%) 

p < 0.01 1652 (26.70%) 1609 (26.0%) 

p < 0.001 919 (14.85%) 885 (14.3%) 

p < 0.0001 496 (8.01%) 457 (7.4%) 

Benjamini & 
Hochberg-corrected p < 0.05 

1822 (29.44%) 1766 (28.5%) 

Bonferroni-corrected p < 0.05 248 (4.01%) 209 (3.4%) 

Table 2. Calculated p-values from the ANOVA test of dZAP1 data compared to the wild type 

(WT) p-values (Aporras1_Week_8) (Trynaur, E., 2017) .  

The ANOVA test was used to determine if genes had expression change that was 

different than zero at any time point. As the p-value decreases, less gene expression change is 

considered significant and the percent (%) of genes included is decreased as displayed by the 

change between genes in p < 0.05 and p < 0.01 in Table 2. As the p value cutoffs are decreased, 

confidence in the data is increased in classifying the genes as changing expression other than 

zero at any time point. The Benjamini & Hochberg p-value calculation was used as a statistical 

tool to decrease the possibility of false discovery (Thissen, D., Steinberg, L., & Kuang, D., 

2002). The Bonferroni p-value calculation was used as a more stringent criteria for the gene 

expression change to be significant compared to the Benjamini & Hochberg p-value which 

explains the percent (%) of significant genes in dZAP1 as lower, 3.4%, compared to 28.5% as 

displayed in Table 2. 
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Figure E. Seven significant profiles were generated from high-level analysis STEM clustering 

and visualization from dZAP1 ANOVA data (Aporras1_Week_10).  

STEM provided a visualization of the expression of genes within significant clusters and 

also generated GOlists to examine which cell process genes were changing in expression during 

the experiment. 
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Figure F. A more in-depth visual of the expression of 252 genes within Profile 22 of dZAP1 

(Aporras1_Week_10). 

Profile 22 was selected because it displayed no significant change in expression until the 

beginning of the recovery phase after time point 60m until time point 90m where expression 

began to decrease. This suggests these genes were not changed in regulation, either 

downregulated or upregulated, during the process of sustaining cold shock. However, in recovery 

to the stimulus, there was an upregulation of the cluster of genes before returning back down in 

the direction the original expression change of zero which suggests a response in these genes in 

order to recover. This could a mechanism by which the cell recovers and returns to normal 

conditions following cold shock. STEM clustering, in Figure F, also provides the very low 
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p-value for the profile which was calculated to be 2.0 E-157 which characterizes its significance 

among the other profiles. Thus, one may have confidence in the validity of the cluster expression 

change in profile 22 of dZAP1.  

Category ID Category 
Name 

#Genes 
Category 

#Genes 
Assigned 

#Genes 
Expected 

#Genes 
Enriched 

p-value Corrected 
p-value 

Fold 

GO:0003779 actin 
binding 

19 11 2.7 8.3 9.60E-06 0.006 4.1 

GO:0098805 whole 
membra-
ne 

127 35 17.9 17.1 2.80E-05 0.012 2.9 

GO:0005739 mitocho-
ndrion 

331 70 46.7 23.3 6.50E-05 0.038 1.5 

GO:0098754 detoxifi-
cation 

26 12 3.7 8.3 7.50E-05 0.04 3.3 

GO:0008092 cytoskel-
etal 
protein 
binding 

30 13 4.2 8.8 8.40E-05 0.048 3.1 

GO:0051156 glucose 
6-phosp-
hate 
metabol-
ic 
process 

11 8 1.6 6.4 1.60E-05 0.012 5.2 

Table 3. Six selected GO terms from the GOlist of Profile 22 of dZAP1 generated by STEM 

analysis (Aporras1_Week_10). 

When examining the categories more in depth though the GOlist, terms reveal cell 

processes and structures which were altered in the recovery phase of the experiment. Actin 

binding, found in Table 3 is characterized as cell processes which bind to actin or other types of 

filaments which are essential in cells to maintain their shape (The Gene Ontology, 2017). 
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Additionally in Table 3, cytoskeletal protein binding presents a similar mechanism which is 

associated with proteins of the cytoskeletal network which also includes actin filaments as 

discussed before (The Gene Ontology, 2017). The whole membrane consists of the phospholipid 

bilayer and any proteins, integral or peripheral, and any chance in gene expression in the 

recovery phase would signify that the cell’s membrane became more active (The Gene Ontology, 

2017). Both mitochondria and glucose 6-phosphate are extremely important to the cell in terms 

of generating ATP. Specifically, the mitochondria is where respiration occurs in which ATP is 

synthesized and glycolysis is the first phase of cellular respiration (The Gene Ontology, 2017). 

Glucose 6-phosphate is the second molecule in glycolysis produced from hexokinase and glucose 

and is a step in the process of generating pyruvate for the cell to direct to the citric acid cycle. 

Compared to the other categories, glucose 6-phosphate metabolic processes displayed the largest 

fold of 5.2 as is presented in Table 3. Therefore, the cell is upregulating genes which are 

responsible for cellular processes which generate ATP, pyruvate, and ultimately energy for the 

cell after the cold shock. Finally, detoxification was another category defined and described as a 

any processes of the cell which are oriented towards removing toxic substances (The Gene 

Ontology, 2017). During the cold shock stimulus, the cell may have been susceptible to releasing 

toxic substances usually stored safely within organelles to destroy polymers and dispose of them 

properly as is characteristic of lysosomes. 
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Transc-
ription 
Factor 

ABF1 ACE2 ASH1 CIN5 CST6 GCN4 GLN3 HAP4 

p-value 1.58E-7 1.69E-8 1.13E-9 4.62E-5 2.14E-5 5.48E-8 .513787 2.12E-8 

Transc-
ription 
Factor 

MSN2 MSN4 RPN4 SFP1 SOK2 YAP1 ZAP1  

p-value 1.48E-1
1 

4.73E-12 2.95E-12 9.66E-10 1.91E-9 1.39E-9 2E-15  

Table 4. Transcription factors and their p-values generated from YEASTRACT 

(Aporras1_Week_14). 

With the use of the Profile 22 genelist, YEASTRACT was used to generate a list of 

transcription factors which target the genes within the cluster from Profile 22. Although 49 were 

considered significant, only 15 were selected for GRNsight visualization as displayed in Table 4 

with their respective p-values. These were selected because of their significant, low, p-values and 

with the assistance from the professor who determined that the number of transcription factors to 

be used for visualization was appropriate (Aporras1_Week_15). 
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Figure G. Unweighted transcription factor regulatory network generated from GRNsight 

(Aporras1_Week_15). 

Once the adjacency matrix and network were created from YEASTRACT’s regulation 

matrix, the network was then input into GRNsight for visualization (Aporras1_Week_15). When 

examining Figure G, MSN2 appears to be regulating many of the other transcription factors 

within the network which could be signifying its importance in the cluster in terms of stress 

responses. Additionally in Figure G, YAP1, HAP4, and CIN5 all have at least four (4) 

transcription factors regulating their individual expression. Therefore, this could infer their 

regulation is integral in mediating gene expression between the target genes and the transcription 

factors which regulate these specific transcription factors of YAP1, HAP4, and CIN5.  
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Figure H. Weighted transcription regulatory network generated from GRNsight where pink 

signifies upregulation and blue signifies downregulation (Aporras1_Week_15). 

MATLAB was used to generate an output which would allow GRNsight to display the 

direction of regulation, upregulation or downregulation, and the magnitude of regulation of 

transcription factors (Aporras1_Week_15). Displayed in Figure H, most of the regulation 

between the transcription factors are characterized as upregulation (pink) compared to 

downregulation (blue). RPN4 has a very large magnitude upregulation and large downregulation 

which could infer it requires significant input required to turn it “on” and similarly significant 

input to turn it “off”. With most of the regulation being upregulation in Figure H, this appears to 

be congruent with the significant increased fold of genes in the recovery phase following cold 

shock as it attempts to recover from the stimulus.  
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Coders: 

Figure I: API calls work together to retrieve gene information object from JASPAR database. 

In the figure above, you will find the bulk of the work that the coders of the JASPAR 

team have spent their time on for this project (Figure I). The getJasparInfo() function consists of 

two parts: retrieve a list of search results and retrieve an object using a matrix ID. It has already 

briefly been explained  up above, but these two API calls work in unison to produce the resulting 

object. The first call produces an array of search result objects, each object coming with a slight 

description of what you will find on that gene’s page. Within this array, one can take the first 

index, which is the value that most accurately represents the gene symbol being asked for, and 

retrieve it’s matrix ID. This matrix ID is JASPAR’s way of distinguishing between the different 

genes and species that they have stored within their database. JASPAR also has an API call 

which requires a matrix ID to return an object will all of the information that they have about that 
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gene. The coders called that API call and passed in the retrieved matrix ID, and this resulting in 

the object that was needed. 

 

Figure J: JASPAR information that is returned from Figure I is parsed into masted object. 

Next, the coders took the information that was returned from the function in Figure I, and 

filtered out all of the extraneous data that was unnecessary to this feature, either because it was 

already being retrieved from a different database or because the biologists of our team didn’t find 

it necessary to be displayed on the gene page. The function in Figure J does most of this work by 

only adding to itself everything that was asked upon, and ignoring the rest. 

 

Figure K: Final product, master object that is returned when one calls getGeneInformation() 

This last figure shows how all of the different databases are compiled into one master 

object, which has everything very clearly labeled. Within the master object, one will find a key 
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for each of the databases that were used. And the value of each of these is itself an object, 

containing all of the information that was retrieved from that page. This is the master object that 

was then passed onto the other teams. 
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Conclusion 

Through this experiment, further insight was gained regarding the effect of cold shock on 

yeast. While past research has found there to be significant change in the expression of a number 

of genes in yeast when exposed to cold shock (Becerra et al., 2003), there has been little 

knowledge accumulated regarding which transcription factors belong in the regulatory network 

for the cold shock response of yeast. This experiment, which was composed of two distinct 

portions, seeked to both utilize and enhance the regulatory network mapping technology of 

GRNsight (Dahlquist et al., 2016), to both better understand the relationship between 

transcription factors in yeast’s cold shock response and enhance the functionality of the 

GRNsight tool for future research. 

In regards to the first portion of this study, GRNsight was used to map the regulatory 

network of gene ontology profile 22 of the dZAP1 strain of yeast. This profile was chosen as it 

was one whose expression was significantly impacted by yeast’s cold shock response. A first 

primary result can be found by looking at the results of the GO terms of this profile in the 

context of past research which found that the cold shock regulatory response in yeast was similar 

to the heat shock response, and thus proposed that this response was a general stress response 

(Becerra et al., 2003). With this research in mind, it can then be inferred that functions such as 

actin binding and detoxification, in Table 3, are general stress responses for the yeast cell that are 

not specific to cold shock. Furthermore, looking at the graph of expression for genes in profile 22 

(Figure F), one can see that the actual change in expression for these genes did not occur until 

time point 60, at which point the cold shock had been halted and the recovery period had begun. 

This further supports the idea that the regulatory responses in yeast cells are not specific to cold 
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shock, but rather are general stress responses that work to return the cell to homeostasis after the 

environmental stress has subsided. Finally, from the analysis of the gene regulatory network 

(Figure G & Figure H), one can see that the majority of the interactions between the transcription 

factors was that of repression, suggesting that the majority of these general stress responses that 

are part of the cell’s response to cold shock are a result of a downregulation of a number of 

transcription factors.  

Turning now to the second part of the experiment, which focused on enhancing 

GRNsight through the addition of an informative gene page for each gene node, the JASPAR the 

Friendly Ghost team worked to incorporate information from the JASPAR database into this 

page. The results from JASPAR the Friendly Ghost’s team project may be described as an object 

that contains all of the relevant data requested by the project managers/biology majors 

(Simonwro120_Week_14). This data was acquired through two API queries, which were sent to 

the JASPAR API in a function named “getJasparInfo” (Simonwro120_Week_15).  

Paul Ford writes in part six of his article “What is Code?” about how applications are 

made, which can be found in the Bloomberg Businessweek magazine. This section of the article, 

titled “How Are Apps Made?”, highlights a myriad of different ideas, tools, and environments 

which facilitate and expedite the process of creating an application (Ford, 2015). Of all these 

ideas, tools, and environments mentioned, APIs (Application Programming Interfaces), text 

editors, and the idea of version control are the three most related concepts discussed in the paper 

in reference to JASPAR’s project results (Simonwro120_Week_11). Application Programming 

Interfaces were very relevant to the JASPAR’s coding team and their results 

(JASPAR_the_Friendly_Ghost). In fact, the objective of JASPAR’s coding team was to return 
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the specified data of a certain gene. This was accomplished by writing queries to the JASPAR 

API with the correct specifications in the “getJasparInfo” function. The environment that the 

JASPAR’s coding team worked in was a text editor called “Atom”. Atom is a simple text editor 

application which allows one to open up and access the code of their files. This is where the bulk 

of the coding took place for the JASPAR coding team (Simonwro120_Week_14). This is an 

integral part of creating any application and arguably the hardest and most time consuming in 

many cases. Almost all projects that involve working with a large and complicated application 

like GRNsight involve multiple people working on different aspects of the project. When one 

codes in an environment that involves many people all working on the same application, they 

will need a way to control and record the changes that were made to the code. In the unfortunate 

event that the application stops running, this recorded list of changes can help the programmers 

identify and fix the bug (Ford, 2015). This practice is referred to as version control, which may 

be implemented through the use of GitHub, and is essential for large groups of coders writing 

code for the same application. In this way, a number of industry techniques were utilized in the 

integration of JASPAR information into the new gene page feature of GRNsight. Overall, this 

retrieved JASPAR data will provide transcription factor specific information to the new gene 

page feature (JASPAR, 2017), which as a whole will allow GRNsight users the ability to obtain 

basic information regarding the genes in a regulatory network without having to leave the 

GRNsight application. 

In conclusion, this research project worked to utilize the features that are already in place 

on GRNsight to gain a better understanding of gene regulatory networks specific to yeast’s cold 

shock response, while also working to build a new GRNsight informational gene page feature 
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that will enhance the application for future users. Going forward, there are a number of further 

steps that could be taken to expand upon this research. In regards to studying yeast genomic 

response to cold shock, additional profiles could be analyzed to see if they follow similar trends 

to the profile 22 analyzed in this study. Furthermore, data from different studies on the topic of 

yeast’s cold shock response could be analyzed alongside results from Dr. Dahlquist’s lab to see if 

they return similar results and GRNsight regulatory network maps. In terms of the added 

GRNsight feature, due to the time constraints of this project, further testing and the addition of 

more information to the gene pages are areas of potential future work. Isolating the code from 

the server using Sinon would ensure more reliable functionality (Sinon, 2017), while modifying 

the code to check for any servers that are not responding (and returning a message to the user if 

this is the case) would create for a better user interface. Finally, there were a few fields that were 

unable to be retrieved due to various reasons, and while a complete list of these fields has not yet 

been able to be obtained (as the coders were still working on the code at the time of this paper be 

written), once this list is accumulated, finding ways to retrieve this information through 

workarounds or other databases is another area for potential improvement of the new GRNsight 

feature. 
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