Relationship between Retinal Thickness Measurements and Visual Acuity in Progressing Cases of Dry Macular Degeneration

Research in progress by Brandon Klein and Dr. Lily Khadjavi.

Brandon Klein

Department of Biology Loyola Marymount University June 24, 2015

- OCT imaging captures dry AMD pathology
 - Visualized pathology
 - Applications
- Extracted OCT data correlates to visual acuity
 - Pathology & central thickness
 - Multiple regression models
- Implications of the regression analyses
 - Clinical applications
 - Biological Interpretations
- Summary

- OCT imaging captures dry AMD pathology
 - Visualized pathology
 - Applications
- Extracted OCT data correlates to visual acuity
 - Pathology & central thickness
 - Multiple regression models
- Implications of the regression analyses
 - Clinical applications
 - Biological Interpretations
- Summary

OCT Images Detail Microscopic Retinal Layers

ILM: Inner limiting membrane IPL: Inner plexiform layer INL: Inner nuclear layer OPL: Outer plexiform layer ONL: Outer nuclear layer ELM: External limiting membrane IS/OS: Junction of inner and outer photoreceptor segments OPR: Outer segment PR/RPE complex NFL: Nerve fiber layer GCL: Ganglion cell layer RPE: Retinal pigment epithelium + Bruch's Membrane

All retinal layers can be distinguished in this high-resolution OCT image of a healthy individual. Note ILM-RPE region.

OCT Measurements Capture Drusen Complexes

Drusen, which present as undulations in the RPE, alter the thickness of the ILM-RPE.

Alfredo Garcia-Layana et al. AMD Book. 2011.

OCT Measurements Capture Geographic Atrophy

Geographic atrophy is characterized by retinal thinning, but also greater beam penetration into the choroid.

Alfredo Garcia-Layana et al. AMD Book. 2011.

Possible Use of OCT Metrics to Predict AMD Outcomes

- Numerical OCT outputs in patients with AMD are heavily influenced by disease pathology.
 - Nonneovascular (dry) AMD pathology is progressive and limited in scope.
 - OCT analyses are becoming important parts of clinical evaluation for AMD patients.
- Question: Can numerical data computed from OCT images be used to understand AMD pathology and predict patient outcomes?

- OCT imaging captures dry AMD pathology
 - Visualized pathology
 - Applications
- Extracted OCT data correlates to visual acuity
 - Pathology & central thickness
 - Multiple regression models
- Implications of the regression analyses
 - Clinical applications
 - Biological Interpretations
- Summary

Data was Extracted from Clinical OCT Analyses

Figure 1 pictures the format of raw data from which thickness measurements (1A) and change measurements (1B) were synthesized.

Visible Pathology Correlated with Patient Visual Acuity

Figure 2. Both visible drusen (2A) and geographic atrophy (2B) correlated with visual acuity. Interaction between them seems apparent.

Provided Central Thickness had a Weaker Relationship with VA than was Expected

Figure 3 demonstrates that central thickness was not as an efficient of a predictor as visible pathology. Note the extreme outliers.

Analysis of Outliers Demonstrated Segmentation Errors

Figure 4 illustrates segmentation errors (4C) that manifested as improper thickness measurements (4B) in severe cases of GA.

Improper Thickness Measurements were Manually Corrected

Figure 5 depicts the process in which improper thickness calculations (5A) were revised using *ImageJ* (5B) and image resolution values.

Correcting Central Thicknesses Meaningfully Improved their Correlation with VA

Figure 6 demonstrates the high correlation between adjusted central thickness values and best corrected visual acuity.

Adding Drusen to the CT Logistic Model Improves Predictive Ability

	Coefficient Estimate	Std. Error	t value	Pr(> t)	Significance					
(Intercept)	1.286991	0.1471753	8.745	3.53E-11	***					
Drusen	0.0893324	0.0292676	3.052	0.00384	**					
Central Thickness	-0.0052628	0.0005049	-10.423	1.84E-13	***					
Adjusted										
	Multiple R2	R2	F-statistic	p-value	Significance					
Model Fit	0.8124	0.8039	95.27	2.20E-16	***					

Figure 6 reveals that a significant predictive model of VA can be created when the influence of drusen on central thickness is weighted.

Relative Subfield Change Values for Longitudinal Data Correlate Well to VA

Α						B					
	Coefficient Estimate	Std. Error	t value	Pr(> t)	Significance		Coefficient Estimate	Std. Error	t value	Pr(> t)	Signif
(Intercept)	0.1103453	0.0458939	2.404	0.02465	*	(Intercept)	0.096412	0.033902	2.844	0.00919	*
Net Central Change	-0.0308883	0.0086488	-3.571	0.00162	**	Relative Central Change	-0.037204	0.010656	-3.491	0.00197	ĸ
Net Inner Change	0.0004667	0.0082847	0.056	0.95556		Change Relative Outer	-0.012398	0.014278	-0.868	0.3942	
Net Outer Change	0.0057753	0.0103106	0.56	0.5808		Change	0.008143	0.019497	0.418	0.6801	
	Multiple	Adjusted	F-				Multiple	Adjusted	F-		
	R2	R2	statistic	p-value	Significance		R2	R2	statistic	p-value	Signifi
Model Fit	0.4894	0.4228	7 349	0.001263	**	Model Fit	0.7192	0.6826	19.64	1.542e-06	**

Figure 7 demonstrates that net change values extracted from OCT analyses (7A) were less predictive of VA than relative change values (7B).

Final Model Using Only OCT Explanatory Variables was Highly Predictive of Visual Acuity

	Coefficient Estimate	Std. Error	t value	Pr(> t)	Significance
(Intercept)	1.3638098	0.2409477	5.66	9.21E-06	* * *
Central Thickness	-0.0025567	0.0006493	-3.937	0.000657	* * *
Volume	-0.0647024	0.0319215	-2.027	0.054415	•
% Central Change	-0.0249007	0.0043303	-5.75	7.40E-06	***
	Multiple R ²	Adjusted R ²	F-statistic	p-value	Significance
Model Fit	0.9087	0.8962	76.29	4.21E-12	***

Figure 8 reveals that OCT metrics in longitudinal studies can be used exclusively in model construction and yield high goodness-of-fit.

- OCT imaging captures dry AMD pathology
 - Visualized pathology
 - Applications
- Extracted OCT data correlates to visual acuity
 - Pathology & central thickness
 - Multiple regression models
- Implications of the regression analyses
 - Clinical applications
 - Biological Interpretations
- Summary

Clinical Applications

- Highlights the interaction between drusen and geographic pathology in dry AMD cases.
- Suggests potential of improvements to OCT segmentation software.
 - Improved central thickness measurements in geographic atrophy cases yield more predictive results.
 - Use of relative change improves predictive results.
- Predictive models for best corrected visual acuity have clinical applications.
 - Can help determine when a patient is operable.
 - Importance of biological imaging moving forward.

Biological Interpretations

- Suggests net cellular degradation effects when drusen and geographic atrophy overlap.
- Lower visual acuities and geographic atrophy associated with higher rates of retinal thinning.
 - Suggests possible positive feedback mechanism for geographic atrophy.
- Potential to generate complete dry AMD progression models from clinical longitudinal studies.

- OCT imaging captures dry AMD pathology
 - Visualized pathology
 - Applications
- Extracted OCT data correlates to visual acuity
 - Pathology & central thickness
 - Multiple regression models
- Implications of the regression analyses
 - Clinical applications
 - Biological Interpretations
- Summary

Summary

- Introduction: Statistical analysis of OCT outputs can be of clinical use in treating AMD patients.
- Methods/Results: Using a database of progressing AMD cases, predictive models for VA were yielded from OCT measurements.
- Discussion: Models such as those found in this study can improve clinical care and biological understanding of AMD.

- OCT imaging captures dry AMD pathology
 - Visualized pathology
 - Applications
- Extracted OCT data correlates to visual acuity
 - Pathology & central thickness
 - Multiple regression models
- Implications of the regression analyses
 - Clinical applications
 - Biological Interpretations
- Summary

Acquiring More Precise Variables for Study

- AMD segmentation software can be used to calculate drusen volume.
- RPE thickness data can also provide more precise metrics of GA.
- Using these improved metrics in similar studies may reveal new and improved relationships.

Segmentation Limitations

 As in this study, segmentation often encounters issues in cases of advanced GA.

• This presents an interest in developing better methods for segmenting areas of GA moving forward.

Acknowledgments

- Dr. Khadjavi
- Dr. George McMickle, MD
- Dr. Dahlquist
- Dr. Dionisio
- Dr. Fitzpatrick
- Dahlquist Lab student researchers

Chiu, S. J., Izatt, J. A., O'Connell, R. V., Winter, K. P., Toth, C. A., & Farsiu, S. (2012). Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images. *Invest Ophthalmol Vis Sci*, 53(1), 53-61.

Drakulich, D (2012). OCT- What We Can See.

ter Haar, F. (2005). Automatic localization of the optic disc in digital colour images of the human retina. 1-81.