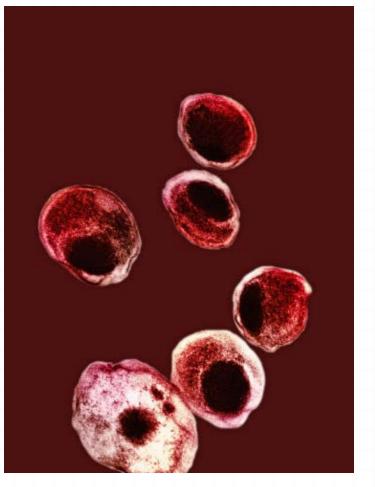
Genome Sequence of an Obligate Intracellular Pathogen of Humans: *Chlamydia trachomatis*

Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R., Zhao, Q., Koonin, E. V., Davis, R.W. (1998) *Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis.* Science 282: 754-759. 10.1126/science.282.5389.754.

Presenters: Hilda Delgadillo, Katrina Sherbina, and Dillon Williams Loyola Marymount University November 12, 2013

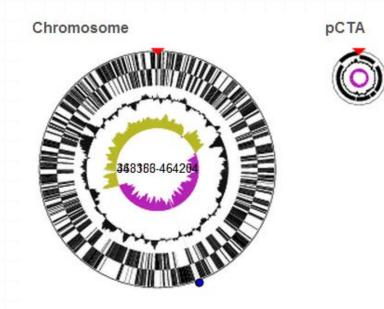

Outline

- O Chlamydia trachomatis causes several disease in humans
- O C. trachomatis strain D/UW-3/CX has a 1,042,519 bp chromosome, 7493 bp plasmid, & 894 protein-coding genes
- Gene expression pathways involved in developmental stage differentiation
- Not all aerobic respiration pathways are complete
- Nutrient uptake across the vacuole is unclear
- Nine paralogous genes were identified encoding Pmp membrane proteins and two proteases
- HKD Superfamily may be crucial in understanding host cell phospholipid modification
- Chlamydial genes originate from horizontal gene transfer

Chlamydia trachomatis causes several disease in humans

Trachoma

- Primary cause of preventable blindness
- Genital tract infections
 - Most common
- Pelvic inflammatory disease, ectopic pregnancy, chronic pelvic pain, epididymitis, infant pneumonia
- May increase risk of HIV infection

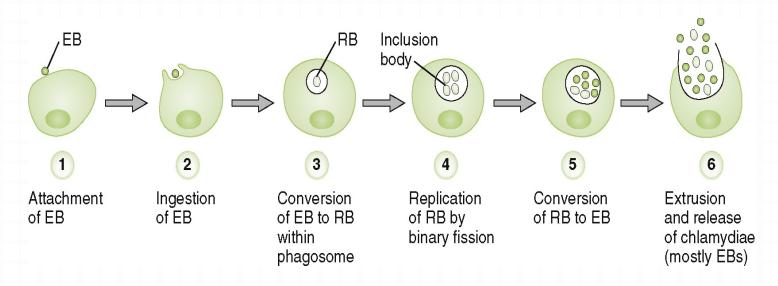


http://www.allposters.com/-sp/The-Bacteria-Chlamydia-Trachomatis-Posters_i9006245_.htm

C. trachomatis strain D/UW-3/CX has a 1,042,519 bp chromosome and a 7493 bp plasmid

- EBs isolated from host cells by sonication on ice
- Remove extracellular DNA and purify with Renografin
- Hydrodynamic shearing
- Sequencing reactions with dye-labeled primers
- Assemble sequences with Phrap and Phred software

http://bacteria.ensembl.org/chlamydia_trach omatis_a_har_13/Location/Genome



894 protein-coding genes were found and functional assignments made for 604 of them

- PEPDATA, FRAMES translate genome
- BLASTP find ORFs
- ØBLASTP-(-mp4-option), CLUSTALW find start codons
- PSI-BLAST find homologous protein sequences
- EMOTIF find sequence motifs
- COGNITOR find Clusters of Orthologous Groups

C. trachomatis genome codes for σ factors that initiate developmental stage changes

https://www.inkling.com/read/rapid-review-microbiology-and-immunologyrosenthal-tan-3rd/chapter-17/chlamydiae-and-zoonotic

 $o\sigma$ Factors- σ^{28} and σ^{54}

 $o\sigma$ Factor regulatory system:

RsbW-like single domain histidine kinase, two RsbV orthologs, and a RsbU-like protein phosphatase

The DNA Repair, Transcription, and Translation Systems in *C. trachomatis* Are Similar To Those in Other Organisms

- Two predicted helicases Swi/Snf2 family of helicases involved in DNA repair
- Mechanistic similarities in Chlamydiae and eukaryotic chromatin dynamics
 - SET AND SWIB domains
- Translational Machinery
 - Aminoacyl-transfer RNA (tRNA), two identical ribosomal RNA operons, complete set of ribosomal proteins, translation factors, RNA modification enzymes

C. Trachomatis Genome Reveals Complete Glycolytic Pathways

Central carbon source is likely glutamate

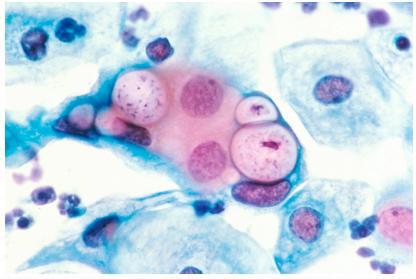
- →Glucose and 2-oxoglutarate play supplementary roles depending on the chlamydial development stage.
- Contains complete glycogen synthesis and degradation system

 \rightarrow Supports hypothesis of a central role for glucose or glucose derivatives as primary carbon source for some developmental stages.

Ontain an intact glycolytic pathway

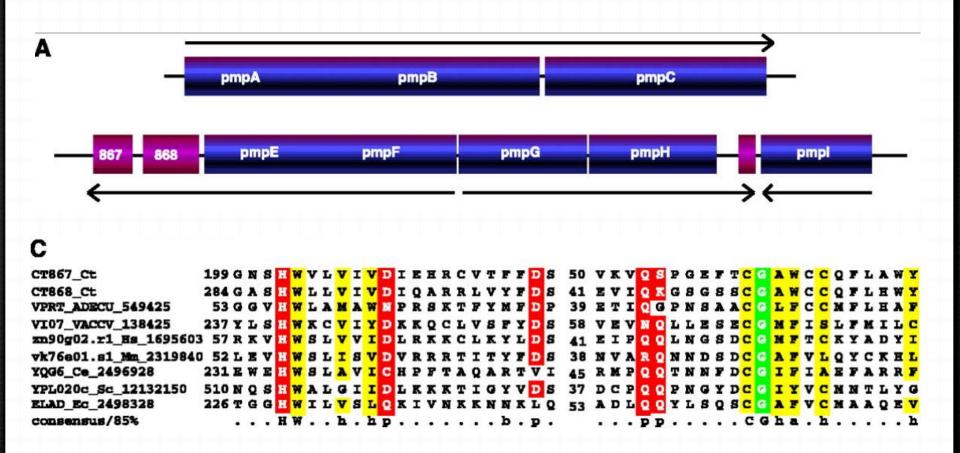
 \rightarrow Exception is fructose-1,6-diphosphate aldolase not being identified.

The TCA Cycle Is Incomplete In Contrast to the Fatty Acid and Phospholipid Synthesis Pathways

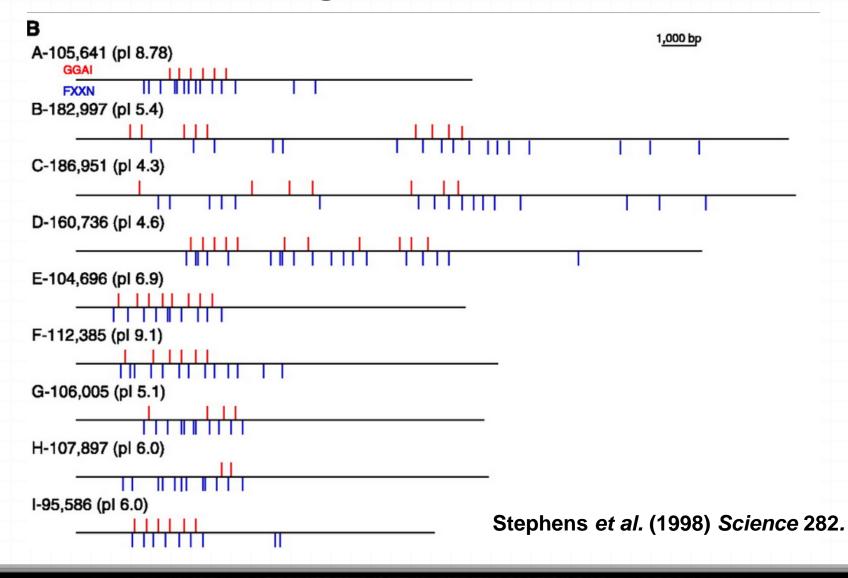

- The tricarboxylic acid (TCA) cycle found to be incomplete because certain genes could not be identified.
 - \rightarrow However, the cycle could be fed by an uptake of glutamine or by uptake of 2-oxoglutarate.
- Contains extensive number of genes for enzymes of fatty acid and phospholipid biosynthesis.
 - →Suggests that chlamydiae synthesize fatty acids, phosphatidylethanolamine, and phosphatidylglycerol de novo.

Nutrient Uptake Across the Vacuole is Unclear

- Ochlamydia invade eukaryotic cells
 - \rightarrow Grow within an intracellular vacuole, called an inclusion (does not fuse with lysosomes).
- Intracellular vacuolar inclusion is apparently not permeable to small compounds.


→Process by which chlamydiae obtain required nutrients is unknown.

- Transport operon identified in genome encodes certain proteins associated with vacuole.
 - →Examples: ToIB, ToIQ, and ExbD-like proteins.


National Library of Medicine (2010)

Nine genes were identified encoding Pmp membrane proteins and two proteases

Stephens et al. (1998) Science 282.

FXXN and **GGAI** tetrameric motifs found in each of the nine genes

HKD Superfamily may be crucial in understanding host cell phospholipid modification

							*		*					*																	
PLD1.2_Hs_2627323	459	¥	L	W	A	н	H	E	ĸ	L	v	I	I	D	Q	s	v	A	F	v	G	G	I	D	L	A	Y	G	R	486	
PLD1.1_Hs_2627323	891	E	L	I	Y	v	H	s	ĸ	L	ь	А	I	D	D	N	т	v	I	I	G	s	A	N	I	N	D	R	s	918	
¥190_Hp_2313277	162	I	ĸ	ĸ	R	м	H	N	ĸ	ь	F	I	v	D	N	F	А	v	I	I	G	G	R	N	Ι	G	D	N	Y	189	
VK04.1_VACCV_335358	108	¥	s	R	v	N	H	A	ĸ	¥	м	v	т	D	-	ĸ	т	A	Y	I	G	T	s	N	W	т	G	N	Y	137	
VK04.2_VACCV_335358	320	L	G	G	v	L	H	т	ĸ	F	W	I	s	D	N	т	н	I	Y	ь	G	s	A	N	M	D	W	R	s	346	
PSS.1_Ec_147389	134	A	ь	G	v	L	н	F	ĸ	G	F	Ι	I	D	D	s	v	ь	Y	s	G	A	s	ь	N	D	v	Y	L	170	
PSS.2_Ec_147389	353	D	D	N	т	¥	н	L	ĸ	G	м	W	v	D	D	ĸ	W	M	L	I	т	G	N	N	L	N	₽	R	A	380	
CT154.1_Ct	136	G	R	т	L	Q	H	ĸ	ĸ	т	м	L	A	D	F	Q	т	v	v	т	G	S	A	N	Y	т	D	L	s	163	
CT154.2_Ct	282	т	Е	G	v	L	H	т	ĸ	I	C	С	I	D	N	ĸ	т	L	I	F	G	s	A	N	W	8	G	A	G	309	
CT155.1_Ct	119	G	С	8	L	L	н	R	ĸ	T	L	L	I	D	N	N	I	v	v	т	G	T	A	N	Y	т	E	A	s	146	
CT155.2_Ct	211	С	Е	G	I	L	H	т	ĸ	v	С	С	I	D	s	s	т	L	Ι	I	G	s	v	N	W	s	R	G	G	238	
CT157.1_Ct	195	₽	Q	I	С	L	H	ĸ	ĸ	т	т	L	I	D	N	Q	L	т	I	I	G	т	A	N	Y	т	ĸ	8	s	222	
CT157.2_Ct	341	₽	Q	I	С	L	H	ĸ	ĸ	т	т	L	I	D	N	Q	L	т	I	I	G	т	A	N	Y	T	ĸ	S	5	368	
CT158.1_Ct	10	N	Q	A	R	L	н	С	ĸ	N	I	v	v	D	G	s	ь	v	I	т	G	s	A	N	F	s	ъ	A	A	37	
CT158.2_Ct	157	E	N	A	L	L	H	С	ĸ	v	G	L	I	D	т	N	L	L	I	т	G	s	A	N	W	т	v	R	G	184	
CT084.1_Ct	126	н	R	ĸ	L	м	н	Q	ĸ	т	м	А	I	D	G	E	L	A	w	I	G	8	A	N	F	т	L	A	s	153	
CT084.2_Ct	272	т	P	Y	Q	L	H	н	ĸ	F	G	I	F	D	ĸ	ĸ	т	ь	I	т	G	s	v	N	W	s	E	N	G	299	
CT284.1_Ct	137	N	v	т	E	s	H	т	ĸ	L	s	I	v	D	G	ĸ	Y	I	F	I	G	G	s	N	L	E	D	ь	Q	164	
CT284.2_Ct	386	A	N	т	Q	L	н	ĸ	ĸ	с	м	L	v	D	D	H	I	L	v	I	G	s	¥	N	F	G	ĸ	ĸ	s	413	
Consensus (80%)							н		ĸ			ь		D				ь	ь		G	8		8	ъ	8	•				
		_	_			-					-		-	-	-	-	-		_	-		-		-		-	_	-	_		

Stephens et al. (1998) Science 282.

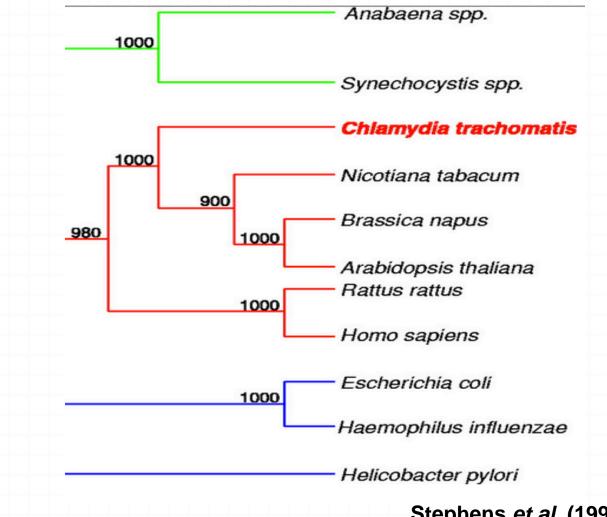

A majority of Chlamydial genes are a result of horizontal gene transfer.

Table 1

Horizontally transferred genes in Chlamydia trachomatis.

Support for horizontal transfer
The α -helical SWIB domain detected only in eukaryotic chromatin-associated proteins.
SET domain found only in numerous eukaryotic chromatin-associated proteins.
Chlamydial Met-RS groups with eukaryotic ones in phylogenetic analysis. A C2C2 "little finger" domain is conserved in <i>Chlamydia</i> , Archaea, and eukaryotes, to the exclusion of the other bacteria. An accessory, COOH-terminal RNA-binding domain is present in bacterial Met-RS, but not in <i>Chlamydia</i> , Archaea, or eukaryotes.
Much greater similarity to eukaryotic than to bacterial orthologs, with the exception of the spirochetes.
Supported by phylogenetic analysis (39); likely chloroplast origin in plants.
Supported by phylogenetic analysis (39).
No easily detectable bacterial homologs.
ATP/ADP translocases of this family are detectable only in <i>Rickettsia</i> and in plants.

Tracing the phylogeny of enoyl-acyl carrier protein reductase

Stephens et al. (1998) Science 282.

MOD for Chlamydia trachomatis Strain A/HAR-13 Is EnsemblBacteria

Sequence Search | BLAST

Go

Tools | Downloads More

🐻 🔹 Search Ensembl Bacteria...

Chlamydia trachomatis A/HAR-13

Chlamydia trachomatis A/HAR-13

Chlamydia trachomatis A/HAR-13

Provider European Nucleotide Archive | Taxonomy ID 315277

CTA_0498

e.g. rplE or Chromosome:592980-593522 or synthetase

Genome assembly: GCA_000012125.1

More information and statistics

Download DNA sequence (FASTA)

View karyotype

Example region

Comparative genomics

What can I find? Gene families based on HAMAP and PANTHER classification.

More about comparative analysis

Gene families

Gene annotation

What can I find? Protein-coding and non-coding genes, splice variants, cDNA and protein sequences, noncoding RNAs.

More about this genebuild

Download genes, cDNAs, ncRNA, proteins (FASTA)

🔧 Update your old Ensembl IDs

Login/Register

Q

Example gene

Example transcript

Variation

This species currently has no variation database. However you can process your own variants using the Variant Effect Predictor:

🔧 Variant Effect Predictor

The EnsemblBacteria Database is an Electronically Curated, Meta Database

- Data is free to use by anyone for any purpose
 Funded by
 - European Molecular Biology Laboratory
 - United Kingdom Biotechnology and Biosciences Research Council
 - The Bill and Melinda Gates Foundation
 - O The Wellcome Trust

Concluding Remarks

- OC. trachomatis strain D/UW-3/CX has a 1,042,519 bp chromosome and a 7493 bp plasmid
- Gene expression pathways involved in developmental stage differentiation
- Not all aerobic respiration pathways are complete
- Nutrient uptake across the vacuole is unclear
- HKD Superfamily may be crucial in understanding host cell phospholipid modification
- Many of the chlamydial genes are a result of horizontal gene transfer with bacterial ancestors and eukaryotic hosts

References

- Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R., Zhao, Q., Koonin, E. V., Davis, R.W. (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. *Science* 282: 754-759. 10.1126/science.282.5389.754.
- Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R., Zhao, Q., Koonin, E. V., Davis, R.W. (1998) Supplmentary Material for Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. *Science*.

<<u>http://www.sciencemag.org/site/feature/data/982604.xhtml</u>>. Accessed 8 November 2013.